Comparison Analysis between CSR-OT and CSR-H for Corrugated Bulkhead of Large Product Tanker

Presented by Cai Shijian
October 23th, 2013, China
Introduction
Rule Comparison
Local Scantling Analysis
Direct Strength Analysis with Coarse Mesh
Local Fine Mesh Analysis
Conclusion
Introduction

CSR-OT
CSR-BC

2010 2011 2012 2013 2014 2015

External review period
Technical Committee review
Adoption
Entry in to force

Submission to IMO for GBS verification

Harmonized CSR
Introduction

Product tanker

CSR-OT

Hull girder strength

Local scantling analysis

Direct strength analysis

Fatigue analysis

Not included in this paper

Coarse mesh FEA

Fine mesh FEA

Yielding

Buckling

Corrugated bulkhead

CSR-H

Object ship for analysis: 115k DWT product tanker

Not included in this paper
Rule Comparison

○ Local Scantling

1. Depth of the corrugation

CSR-H: \[d = \frac{1000l_c}{C} \]

For the definition of \(l_c \), the bottom of the upper stool is not to be taken more than a distance from the deck at the centre line equal to:

- 3 times the depth of corrugation, in general.
- 2 times the depth of corrugation, for rectangular stool.

2. Cold and hot formed corrugations

CSR-H: \[t = 0.0158b_p \sqrt{\frac{|P|}{C_{CB}R_{eH}}} \]

For horizontally corrugated longitudinal bulkheads, without being greater than \(C_{CB\text{-max}} \).

\[C_{CB} = \beta_{CB} - \alpha_{CB} \frac{|\sigma_{h\delta}|}{R_{eH}} \]

Not noted in CSR_OT
Rule Comparison

Local Scantling

3. Net section modulus over the height

\[Z_{cg} = \frac{1000 M_{cg}}{C_s \cdot M_{cg} \cdot R_{eH}} \]

\[M_{cg} = \frac{C_i \cdot P \cdot s_{cg} \cdot l^2_0}{12000} \]

Some parameter values are different when calculating \(C_i \) between CSR-H and CSR-OT (2010). For example:

\(C_i \) value at upper end of \(l_{cg} \)

<table>
<thead>
<tr>
<th>Bulkhead</th>
<th>CSR-OT(2010)</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse bulkhead</td>
<td>0.80(C_{ml})</td>
<td>0.65(C_{ml})</td>
</tr>
</tbody>
</table>

4. Design pressure

May be the main factor influencing the results.
Direct Strength Analysis

1. Structural modelling (Coarse mesh)

(1) CSR-H (Pt1, Ch7, Sec2, 2.4.4) *(Not noted in CSR-OT)*:

- The mesh on the longitudinal corrugated bulkhead shall follow longitudinal positions of transverse web frames…
- The aspect ratio of the mesh in the corrugation is not to exceed 2 with a minimum of 2 elements for the flange breadth and the web height.
- Dummy rod elements with a cross sectional area of 1 mm² are to be modelled at the intersection between the flange and the web of corrugation.

(2) Mesh adjustment between corrugation and stool

<table>
<thead>
<tr>
<th>Adjustment item</th>
<th>Corrugation shape</th>
<th>Stiffeners on stool</th>
<th>Stress correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR-OT</td>
<td>Allowed</td>
<td>Allowed</td>
<td>Allowed</td>
</tr>
<tr>
<td>CSR-H</td>
<td>Not allowed</td>
<td>Allowed</td>
<td>None</td>
</tr>
</tbody>
</table>
Rule Comparison

Direct Strength Analysis

2. Permissible yield utilisation factor (Coarse mesh)

<table>
<thead>
<tr>
<th>CSR-OT</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural component</td>
<td>Structural component</td>
</tr>
<tr>
<td>Bulkhead with no lateral pressure</td>
<td>Bulkhead with no lateral pressure, dummy rod of corrugated bulkhead</td>
</tr>
<tr>
<td></td>
<td>1.0 (S+D) 0.8 (S)</td>
</tr>
<tr>
<td>Vertical corrugated bulkheads (with lower stool)</td>
<td>Vertical corrugated bulkheads (with lower stool), horizontally corrugated bulkhead</td>
</tr>
<tr>
<td></td>
<td>0.72 (S)</td>
</tr>
<tr>
<td>Longitudinal bulkheads (with lower stool)</td>
<td>Longitudinal bulkheads (without lower stool)</td>
</tr>
<tr>
<td></td>
<td>0.8 (S+D) 0.64 (S)</td>
</tr>
<tr>
<td>Transverse bulkheads (with lower stool)</td>
<td>Transverse bulkheads (without lower stool)</td>
</tr>
<tr>
<td></td>
<td>0.72 (S+D) 0.576 (S)</td>
</tr>
</tbody>
</table>
Rule Comparison

☐ Direct Strength Analysis

3. Yield utilisation factor (Coarse mesh)

<table>
<thead>
<tr>
<th>CSR-OT</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_y = \frac{\sigma_{vm}}{\sigma_{yd}}$ for shell elements</td>
<td>$\lambda_y = \frac{\sigma_{vm}}{R_y}$ for shell elements</td>
</tr>
<tr>
<td>$\lambda_y = \frac{\sigma_{rod}}{\sigma_{yd}}$ for rod elements</td>
<td>$\lambda_y = \frac{</td>
</tr>
<tr>
<td>σ_{yd}: specified minimum yield stress, $\leq 315\text{MPa}$ for S+D in areas of stress concentration.</td>
<td>$R_y = 235/k$</td>
</tr>
</tbody>
</table>

4. Local fine mesh analysis

(1) Corrosion addition

<table>
<thead>
<tr>
<th>CSR-OT</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>The specified fine mesh areas: 1.0 tc</td>
<td>0.5 tc</td>
</tr>
<tr>
<td>Other areas: 0.5 tc</td>
<td></td>
</tr>
</tbody>
</table>
Rule Comparison

- Direct Strength Analysis

4. Local fine mesh analysis

(2) Mandatory and screening areas

CSR-H (Not noted in CSR-OT):

- Midship cargo tank region:

Mandatory area
(Intersection of long. BHD. & tans. BHD.)

Screening area

- Outside midship cargo tank region (Screening area):
 Connections between corrugation and adjoining lower structure
Rule Comparison

Direct Strength Analysis

4. **Local fine mesh analysis**

(3) Screening criteria

CSR-H (Not noted in CSR-OT):

<table>
<thead>
<tr>
<th>Type of Details</th>
<th>Screening factors, λ_{sc}</th>
<th>Permissible screening factors, λ_{scperm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>The connection of corrugation and upper supporting structure to upper stool</td>
<td>λ_y</td>
<td>0.75 λ_yperm</td>
</tr>
<tr>
<td>Connections of corrugation to adjoining structure (Outside midship cargo tank region)</td>
<td>$\lambda_{sc} = \frac{K_{sc} \cdot \sigma_c}{R_y}$</td>
<td>1.50 f_f (S+D)</td>
</tr>
</tbody>
</table>

(4) Fine mesh criteria:

<table>
<thead>
<tr>
<th></th>
<th>CSR-OT</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield utilisation factor</td>
<td>$k\sigma_{vm}/235$ ($k \geq 0.78$ for S+D)</td>
<td>σ_{vm} / R_y</td>
</tr>
</tbody>
</table>
Rule Comparison

Buckling Assessment

1. **Buckling criteria**

<table>
<thead>
<tr>
<th>Structural component</th>
<th>CSR-OT</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η_{all}</td>
<td>Structural component</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Bulkhead with no lateral pressure</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Corrugated bulkheads (with lower stool)</td>
<td>0.9 (S+D)</td>
<td>Vertically corrugated bulkheads (with lower stool), horizontally corrugated bulkhead</td>
</tr>
<tr>
<td></td>
<td>0.72 (S)</td>
<td></td>
</tr>
<tr>
<td>Corrugated bulkheads (without lower stool)</td>
<td>0.81 (S+D)</td>
<td>Vertically corrugated bulkheads (without lower stool)</td>
</tr>
<tr>
<td></td>
<td>0.648 (S)</td>
<td></td>
</tr>
</tbody>
</table>
Rule Comparison

¬ Buckling Assessment

2. Buckling requirements for direct strength analysis
 (1) Local buckling

<table>
<thead>
<tr>
<th>Structural item</th>
<th>CSR-OT</th>
<th>CSR-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrugation flange</td>
<td>Corrugation flange and web</td>
<td>Max normal stress parallel to the corrugation + another normal stress + shear stress; Max shear stress + two normal stresses</td>
</tr>
<tr>
<td>Uni-axial: only normal stress parallel to the corrugation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>$\psi = 1$</td>
<td>$\alpha = 2, \psi = 1$</td>
</tr>
</tbody>
</table>

(2) Reference stress

Not noted in CSR-OT.
Object ship for analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship type</td>
<td>Aframax product tanker</td>
</tr>
<tr>
<td>Dead weight</td>
<td>115,000 DWT</td>
</tr>
<tr>
<td>Corrugated bulkhead</td>
<td>Longitudinal and transverse</td>
</tr>
<tr>
<td>Stool fitted</td>
<td>Lower and upper stool</td>
</tr>
<tr>
<td>Corrugation direction</td>
<td>Vertical corrugation</td>
</tr>
<tr>
<td>Corrugation type</td>
<td>Mainly rolled by line heat forming</td>
</tr>
</tbody>
</table>
Local Scantling Analysis

- Maximum design loads (longitudinal corrugated bulkhead, mid cargo tank)

![Graph showing maximum design loads](image)
Local Scantling Analysis

Maximum design loads (transverse corrugated bulkhead, FR80)
Local Scantling Analysis

Results for longitudinal bulkhead

<table>
<thead>
<tr>
<th>Vertical position</th>
<th>Main factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower part</td>
<td>Design load at the lower end</td>
</tr>
<tr>
<td>Middle and upper part</td>
<td>average load of lower and upper end at ends of the tank</td>
</tr>
</tbody>
</table>
Local Scantling Analysis

Results for transverse bulkhead

<table>
<thead>
<tr>
<th>Vertical position</th>
<th>Main factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower part</td>
<td>Design load at the lower end</td>
</tr>
<tr>
<td>Middle and upper part</td>
<td>average load of lower and upper end at mid of the tank</td>
</tr>
</tbody>
</table>
Yielding Assessment

(1) The most critical yielding assessment results

Yield factor ratio ($\frac{\lambda_y}{\lambda_{yperm}}$)

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal BHD</th>
<th>Transverse BHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR-OT (shell)</td>
<td>0.804</td>
<td>0.813</td>
</tr>
<tr>
<td>CSR-H (shell)</td>
<td>0.864</td>
<td>0.844</td>
</tr>
<tr>
<td>CSR-H (rod)</td>
<td>0.823</td>
<td>0.796</td>
</tr>
</tbody>
</table>
Direct Strength Analysis (Coarse Mesh)

- **Yielding Assessment**
 - (2) Yield criteria analysis (S+D)

\[
\frac{\frac{\lambda_y}{\lambda_y\text{perm}}_{\text{CSR}_H}}{\frac{\lambda_y}{\lambda_y\text{perm}}_{\text{CSR}_OT}}
\]

- **General areas**: Areas of stress concentration
 - Longitudinal BHD
 - Transverse BHD
 - H32
 - H36
 - H40

- **Longitudinal BHD**

- **Transverse BHD**
Yielding Assessment

(3) Yield criteria analysis (S)

\[\frac{(\lambda_y/\lambda_{yperm})_{CSR_H}}{(\lambda_y/\lambda_{yperm})_{CSR_OT}} \]

- Longitudinal BHD
- Transverse BHD

- H32
- H36
- H40
Buckling Assessment

(1) Buckling results of longitudinal corrugated bulkhead
Direct Strength Analysis (Coarse Mesh)

您同意

Buckling Assessment

(2) Buckling results of transverse corrugated bulkhead

Buckling factor ratio

Breadth ratio of Tran. BHD

- Flange (CSR-OT)
- Flange (CSR-H)
- Web (CSR-H)
Buckling Assessment
(3) The most critical buckling assessment results

\[\eta_{\text{act}} / \eta_{\text{all}} \]

- CSR-OT (flange)
- CSR-H (flange)
- CSR-H (web)
Buckling Assessment

(4) Comparison buckling analysis of corrugation flange
(Same stresses for CSR-OT and CST-H)

\[\frac{\eta_{\text{act}}}{\eta_{\text{all}}} \]

- CSR-OT: 1.034, 1.018
- CSR-H: 0.998, 0.982
Buckling Assessment

(5) Sensitivity analysis for normal stresses

\[\eta_{\text{act}} \]

Corrugation panel:
- \(R_{eH} = 355 \text{N/mm}^2 \)
- \(t = 15 \text{mm} \)
- \(b = 1000 \text{mm} \)
- Stress unit: MPa

Graph showing the relationship between normal stresses and \(\eta_{\text{act}} \).
Local Fine Mesh Analysis

- **Object area:** Connection between corrugations and supporting structure in way of the lower stool shelf plate at the intersection of longitudinal and transverse corrugated bulkheads.

- **Method:** Sub model method.

- **Model extent:** Full breadth and depth, ±2 frames.

The bigger the model extent is, the more accurate the results are!
Local Fine Mesh Analysis

Original gusset plate arrangement:
Local Fine Mesh Analysis

- Modified gusset plate arrangement:
Local Fine Mesh Analysis

Maximum stresses (Mpa):

![Bar chart showing maximum stresses for Original and Modified at Points A, B, and C for CSR-OT and CSR-H.]
Conclusion

- The local scantling requirements are similar between CSR-OT and CSR-H, while the design load is the main factor.

- The results of CSR-H are generally a little higher than that of CSR-OT from the direct strength analysis mainly due to the higher design loads.

- In coarse mesh analysis, for general areas (not stress concentration), higher strength steel will give more severe yielding results for CSR-H than CSR-OT, but for areas of stress concentration in S+D, it is opposite. There are more advantages for transverse bulkhead than longitudinal bulkhead in the transition of criteria.
Conclusion

- The corrugation scantlings in the middle and upper part are normally determined by the buckling assessment results. The buckling assessment results of flange are mainly determined by vertical normal stress, higher in the mid breadth of tank. The buckling assessment results of web are mainly determined by shear stress, higher in the end of tank.

- The scantling requirements of lowest part of corrugation are determined by the local fine mesh results. More attentions shall be paid to the area around the intersection of longitudinal and transverse corrugated bulkheads near lower stool. The way adding proper gusset plate is more effective than increasing thickness.